Sample covariance shrinkage for high dimensional dependent data

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage Estimators for High-Dimensional Covariance Matrices

As high-dimensional data becomes ubiquitous, standard estimators of the population covariance matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators of sample covariance matrices in the large p, small n setting namely, shrinkage estimat...

متن کامل

Covariance shrinkage for autocorrelated data

The accurate estimation of covariance matrices is essential for many signal processing and machine learning algorithms. In high dimensional settings the sample covariance is known to perform poorly, hence regularization strategies such as analytic shrinkage of Ledoit/Wolf are applied. In the standard setting, i.i.d. data is assumed, however, in practice, time series typically exhibit strong aut...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Two Sample Tests for High - Dimensional Covariance Matrices

We propose two tests for the equality of covariance matrices between two high-dimensional populations. One test is on the whole variance–covariance matrices, and the other is on off-diagonal sub-matrices, which define the covariance between two nonoverlapping segments of the high-dimensional random vectors. The tests are applicable (i) when the data dimension is much larger than the sample size...

متن کامل

SHrinkage Covariance Estimation Incorporating Prior Biological Knowledge with Applications to High-Dimensional Data

In “-omic data” analysis, information on the structure of covariates are broadly available either from public databases describing gene regulation processes and functional groups such as the Kyoto encyclopedia of genes and genomes (KEGG), or from statistical analyses – for example in form of partial correlation estimators. The analysis of transcriptomic data might benefit from the incorporation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2008

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2007.06.004